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A new technique is provided for computing the weights modulo 8 in binary
cyclic codes. These codes have proved to be the most important for GCF error
detection /correction, and the method described will frequently aid in the detailed

analysis of such codes.

l. Introduction

In this article we will obtain an improved method of
calculating the value of the weights modulo 8 in a binary
cyclic code. Such codes are the most important class of
block codes known. For example, the (32,6) block code
used in the high-rate telemetry system, the (1200, 1167)
BCH error detection code used on the GCF/NASCOM
lines, and the (23, 12) Golay code currently being studied
for use on a concatenation scheme for MJS77 are all essen-
tially binary cyclic codes. Weight information is a first
step toward analyzing the error correction properties of
a code.

If C is an (n, k) binary cyclic code, denote its weight
enumerator by

A@Z)= S AZ

1=0
A; being the number of words of weight i in C. Knowl-
edge of A (Z) is vital for evaluating the performance of the
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code C, but often C contains so many codewords that a
direct enumeration is not possible. Thus indirect methods
must be adopted. In Section II we present a technique
which can usually be used to evaluate A (Z) modulo
75 — 1. This information can then be added to other
known information about A (Z) in the attempt to calculate
A (Z). An example of the technique is given in Section IIL.

Il. The New Technique

Let ¢ = (¢, €1, * * * ,Cn-1) be a codeword from C. We
assume n is odd. Then the Mattson—-Solomon polynomial
of c,

-1

s(x) = 2 s

has the property that ¢; = s(67), where 6 is a primitive
nth root of unity in some extension of GF (2). The n coeffi-
cients s; also lie in an extension of GF (2), and s} = s.;
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(subscripts mod n). Let us write the weight of ¢ in its
binary expansion

w(c) =T, (c) + 2T, (¢) + 414 (c) +

where T (¢) = 0 or 1.

Let us first show that Ty (¢) =s, (mod 2). T, (¢) =
w(c)=co+ ¢ + - + ¢y (mod 2). Thus

n-1 n-1

‘=35 3 09 (mod2) (1)

n-1n-1
Te)=3 3 si6
j=0 i=0

Now since for i = 1,2, - - - ,n— 1 #' is a zero of

the inner sum in (1) is zero unless i = 0. Thus T, (¢)=ns,=
80 {mod 2).

The simple argument above was extended by Solomon
and McEliece (Ref. 1) to I, and to T,. They assumed that
Ty (c) = 0. This assumption involves no essential loss of
generality, since in a binary (n, k) cyclic code with n odd,
either all words have even weight, or else exactly half
have odd weight, the words of odd weight being the
mod-2 complements of the words of even weight. Under
this assumption, Solomon and McEliece proved

I, (c)=

To give their expression for Ty, we must first introduce
some notation. Let P, represent the set of unordered selec-
tions, with repetitions permitted, of r elements from the
set {0,1,2, - - - ,n — 1}. Let P° be the subset of P, of
those selections whose entries sum to 0 (mod n). Thus if
n =3, P, contains 15 selections but P? contains only 0000,
0012, 0111, 0222, and 1122. If a = (alaga;ga“}) €P4, deﬁne
Sa = Sa,Sa,Sa,Sa,. Then Solomon and McEliece proved that

2 {si8;:4 <j,i+ j=0(mod n)} (mod 2) (2)

Ty(c)= 3 Ause(mod2) (3a)

aeP

where the coefficients A, are all zero, except that A, = 1 in
the four mutually exclusive cases

a= (i,i,k) 1,7, k distinct (3b)
a= (i,4,4,f) i, 7 distinct (3¢)

= (i,f,n — i,n —§) i, { distinct (3d)
a«=(i,i,n~in—1i) andn=1(mod 4). (3e)
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Our object here is to show that (3a) can be greatly sim-
plified. First, the sum in (3a) over the terms (3e) is, when
=1 (mod 4),

2sish = 3s5i8» 1 =TI (¢) (mod 2)
from (2). Next the sum over the terms (3d) is

> SiSn-1 SiSnj.

i<]

But this is just the second elementary symmetric function
of the terms sq, @ ¢ PY.

We now come to the terms (3b) and (3c). If « is a term
in (3b), se = sis;8: = $.:8;8y, since as mentioned above 3 =
$2i. Similarly in case (3c) so = 838, = $2:8;8;. Of course these
terms could “collapse” further if, for example, 2i=/j
(mod n). Thus every term sq from (3b) and (3c) “collapses”
to a term of one of the forms s,ss. with a < b < ¢ and
a+b+c=0 (mod n) or 55, witha<banda+b=0
(mod n).

Thus we are led to define Q, as the set of unordered selec-
tions, without repetition, of r objects from {0,1,---,n—1},
and Q? as the subset of Q, of those selections whose entries
sum to 0 (mod n). We have seen that every term aeP? from
(3b) or (3c) collapses to a term in either Q% or Q2. Let us
now see how many elements in P¢ can collapse to a par-
ticular element in Q? or Q.

First consider Q9. A typical term is (i,7) with i < j and
i + j==0 (mod n). We easily see that the only terms in P?
which collapse to (4, 1) are:

N
,S:;le-.
u:|~
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DO |-

i1
27 27
The last of these terms is not of form (3b) or (3¢) and so
does enter into the sum (3). The other two terms are dis-
tinct elements of PY, either of class (3b) or (3c), and since

Sa, + Sa, =0 (mod 2), we see that the terms of P° which
collapse to terms in Q2 do not contribute to the sum (3).

Finally we consider those terms (3b) and (3c) of P?
which collapse to a term in QY A typical term in Q° is
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(1,7, k) with i <j < kand i + j + k=0 (mod n). The terms
in P9 which collapse to (i, f, k) are then

i N\ L
(_2- H E ’ 7> k) — oy
: i g -
(’L, 9> g k) = ag

) . k k
<1'> 7> —2— s E) = a3

Now a,, a. and «, are all distinct elements of P? belong-
ing to either (3b) or (3c). And since sa, + Sa, -+ Sa, = $iS;Sk,
we see that the sum in (3) over the o’s in classes (3b) and

(3¢) is 3 {sa:eQl}.

Finally let us define ¢{” (c) as the jth elementary sym-
metric function of the terms sq, aeQ°. We have then proved
that the formula of Solomon-McEliece (3a) can be re-
written as:

I (c)=o®(c) + ¢ (c) + (1 + n,) o{® (c) (mod 2)
(4)

where n=n, - - n.n,1 is the binary expansion of n.
This is our main result. In Section IIT we give an example
of the use of (4).

HI1. An Example

We will illustrate our result on the (17, 8) cyclic code
whose check polynomial x® + x + «x* + x® + 1 is irreduci-
ble mod 2. It follows from the Mattson~Solomon results
that every codeword ceC has s; = 0 except possibly for
je{l,2,4,8 16,15 13,9} = K; ie, j = 2" (mod 17) for
m=20,1, - - - ,7. Furthermore for each such codeword
there will exist a unique x:GF (28) such that s.» = 2",

Now we are ready to apply our formula for T,. The first
term, o' (c), will involve only those selections (%, 1, k) from
o, all of whose elements lie in the set K. But it is easily
verified that no such tuples (i, , k) exist. Thus o{® (c) =0
for all cC. The next two terms are the first two elemen-
tary symmetric functions of the nonzero terms {sa:aeQ3};

i.e., {81814, S2815, $1813, SS9} but since sym = x°" for some
xeGF (2°) this set is {x7, x17'2, 217", 178} If x 540, x*~! =
x5 =1 in GF (28), and so 17 in fact lies in the smaller
field GF (24). In fact for every yeGF (2*) — {0}, there are
exactly 17 values of x:GF (2%) — {0} such that x*” = y. For
every codeword ¢ corresponding to such an x, then

Ti(c) = o2 (y) + o (y),
where Z* + o, () 22 + 02 (y) Z* + 05 () Z + 0. (y) =
(Z - y)(Z —y))(Z — y*) (Z — ¢*) is the field polynomial
for y.
Similarly, but more easily,

I (¢) = o1 (y)-

Finally all that is needed is a list of the field polynomials
of the 15 nonzero elements of GF (2*):

Number of
Polynomial distinct roots T, T,
VA +Z+1 4 0 0
VAR VA +1 4 1 1
i+ + 22+ 7+ 1 4 0 1
VA + Z* +1 2 1 0
VA +1 1 0 0

Thus we see that in the code C there are, apart from the
all-zero word,

85 = 17 - 5 words with weight =0 (mod 8)
68 = 17 * 4 words with weight = 2 (mod 8)
34 = 17 - 2 words with weight =4 (mod 8)
68 = 17+ 4 words with weight =6 (mod 8)
Since the BCH bound assures us that there are no words

of weight less than 5 or greater than 12, the complete
weight enumerator for C is

A(Z) =1+ 68Z¢ + 85Z° + 68Z* + 347"
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